

*t***-BuOK-Mediated Hydrophosphination of Functionalized Alkenes: A Novel Synthesis of Chiral P,N- and P,P-Ligands**

Tanasri Bunlaksananusorn and Paul Knochel*

Department Chemie, Ludwig-Maximilians-Universita¨*t Mu*¨*nchen, Butenandtstrasse 5-13, Haus F, 81377 Mu*¨*nchen, Germany*

paul.knochel@cup.uni-muenchen.de

Received December 17, 2003

A novel synthesis of effective chiral P,N- and P,P-ligands has been developed by using a *t*-BuOKmediated hydrophosphination of chiral alkenylpyridines and alkenylphosphine oxides. Ir complexes of chiral P,N-ligands 1 and 3 gave high enantioselectivities for the hydrogenation of (Z) - α -(acetamido)cinnamate **25** and (*E*)-1,2-diphenylpropene leading to the hydrogenated products with up to 97% ee.

Introduction

Tertiary phosphines are an important class of compounds. They are widely employed both as ligands for transition metal complexes and in various catalytic processes.1 Thus, there is a considerable interest in developing new methodologies allowing the stereoselective formation of carbon-phosphorus bonds. Taking atom economy principles into consideration, α a route involving the addition of phosphines $(HPR₂)$ to alkenes would be desirable. This reaction has been reported in the literature and was carried out in the presence of a radical initiators, 3 strong basic conditions, 4 or transition metal catalysis.5 The use of phosphine-borane complexes is also possible and enables selective hydrophosphinations.⁶ Recently, we reported that *t*-BuOK-mediated addition reactions of nucleophiles (carbonyl derivatives and phosphanes) led to a variety of functionalized alkenes.7 We have applied this method for the preparation of modular

(4) (a) Khachatryan, R. A.; Sayadyan, S. V.; Grigoryan, N. Y.; Indzhikyan, M. G. *Zh. Obshch. Khim.* **1988**, *58*, 2472. (b) Arbuzova, S. N.; Gusarova, N. K.; Malysheva, S. F.; Brandsma, L.; Albanov, A. I.; Trofimov, B. A. *Zh. Obshch. Khim.* **1996**, *66*, 56. (c) Casey, C. P.; Paulsen, E. L.; Beuttenmueller, E. W.; Proft, B. R.; Matter, B. A.; Powell, D. R. *J. Am. Chem. Soc*. **1999**, *121*, 63.

(5) (a) Shulyupin, M. O.; Kazankova, M. A.; Beletskaya, I. P. *Org. Lett*. **2002**, *4*, 761. (b) Douglass, M. R.; Marks, T. J. *J. Am. Chem. Soc*. **2000**, *122*, 1824. (c) Takaki, K.; Takeda, M.; Koshoji, G.; Shishido, T.; Takehira, K. *Tetrahedron Lett*. **2001**, *42*, 6357. (d) Han, L.-B.; Mirzaei, F.; Zhao, C.-Q.; Tanaka, M. *J. Am. Chem. Soc*. **2000**, *122*, 5407. (6) (a) Bourumeau, K.; Gaumont, A.-C.; Denis, J.-M. *Tetrahedron*

Lett. **1997**, *38*, 1923. (b) Bourumeau, K.; Gaumont, A.-C.; Denis, J.-M. *J. Organomet. Chem.* **1997**, *529*, 205.

(7) (a) Rodriguez, A. L.; Bunlaksananusorn, T.; Knochel, P. *Org. Lett*. **2000**, *2*, 3285. (b) Bunlaksananusorn, T.; Rodriguez, A. L.; Knochel, P. *Chem. Commun.* **2001**, 745. (c) Bunlaksananusorn, T.; Knochel, P. *Tetrahedron Lett.* **2002**, *43*, 5817.

10.1021/jo030383u CCC: \$27.50 © 2004 American Chemical Society
Published on Web 06/04/2004

SCHEME 1

pyridine-type P,N-ligands **¹**-**⁵** (Scheme 1). These modular P,N-ligands were proved to be efficient ligands for Ircatalyzed enantioselective hydrogenation reactions⁸ and Pd-catalyzed allylic substitution reactions.9

Herein, we wish to report the full details for the synthesis of novel chiral P,N-ligands **¹**-**⁵** and the extension to the synthesis of chiral P,P-ligands using *t*-BuOKmediated hydrophosphination of alkenylpyridine **7** and alkenylphosphine oxide **8** (eq 1).

$$
HP = \begin{cases}\n\text{P1} & \text{if } \text{H} \text{ is } \text{if } \text{H
$$

Results and Discussion

On the basis of our preliminary preparation of *ractrans*-aminophosphine oxide **9** and *rac*-*trans*-aminophosphine **10** (Scheme 2),^{7c} we turned our attention to the preparation of novel chiral P,N-ligands of type **¹**-**5**, starting from readily available chiral building blocks such as (+)-camphor (**10**) and (+)-nopinone (**13**).

The preparation of the corresponding alkenyl triflates has been performed according to the literature.¹⁰ Treatment of the lithium enolate anions of commercially available $(+)$ -camphor (11) and $(+)$ -nopinone (13) with N -phenyltrifluoromethanesulfonamide (Tf₂NPh) in THF

⁽¹⁾ Brandsma, L.; Vasilesky, S. F.; Verkruijsse, H. D. *Application of Transition Metal Catalysts in Organic Synthesis*; Springer-Verlag: Berlin, 1999.

^{(2) (}a) Trost, B. M. *Angew. Chem*. **1995**, *107*, 285; *Angew. Chem., Int. Ed.* **1995**, *34*, 259. (b) Trost, B. M. *Science* **1991**, *254*, 1471. (c) Trost, B. M. *Acc. Chem. Res*. **2002**, *35*, 695.

^{(3) (}a) Therrien, B.; König, A.; Ward, T. R. *Organometallics* 1999, *18*, 1565. (b) Mitchell, T. N.; Heesche, K. *J. Organomet. Chem.* **1991**, *409*, 163. (c) Therrien, B.; Ward, T. R. *Angew. Chem.* **1999**, *111*, 418; *Angew. Chem*. *Int. Ed.* **1999**, *38*, 405.

⁽⁸⁾ Bunlaksanusorn, T.; Polborn, K.; Knochel, P. *Angew. Chem.* **2003**, *115,* 4071; *Angew. Chem., Int. Ed.* **2003**, *42*, 3941.

⁽⁹⁾ Bunlaksananusorn, T.; Luna, A. P.; Bonin, M.; Micouin, L.; Knochel, P. *Synlett* **2003**, 2240.

⁽¹⁰⁾ McMurry, J. E.; Scott, W. J. *Tetrahedron Lett*. **1983**, *24*, 979.

SCHEME 2

a Reagent and conditions: (a) LDA, THF, Tf_2NPh , -78 to 0 °C, 16 h; (b) Pd(dba)₂ (2 mol %), dppf (2 mol %), THF, LiCl, 70 °C, 16 h.

at 0 °C led to the desired alkenyl triflates in 90-92% yield (Scheme 3). The chiral alkenyl triflates **¹²**-**¹⁴** smoothly underwent Negishi cross-coupling reactions¹¹ with 2-pyridylzinc bromide **15a** prepared from commercially available 2-bromopyridine by direct Br-Li exchange, affording the desired 2-alkenylpyridines **7a** and **7c** in 78-85% yield (Scheme 3). 2-Alkenylquinoline **7b** was obtained in satisfactory yield (60%) through a Pdcatalyzed cross-coupling of 2-quinolylzinc bromide **15b** with alkenyl triflate **12** in the presence of LiCl as shown in Scheme 3.

We have then examined the preparation of substituted bromopyridines **7d**, **e**. A method developed by Cai¹² allows the formation of monometalated species. Subsequent transmetalation with anhydrous zinc bromide, followed by Negishi cross-coupling reactions, led to the expected coupling products **16a**,**^b** in 34-70% yield. Afterward, the bromopyridines **16a**,**b** underwent a Suzuki cross-coupling reactions with phenylboronic acid in the presence of a catalytic amount of $Pd(PPh₃)₄$ giving 2-alkenyl-6-phenylpyridines **7d**,**e**, respectively, in high yields (Scheme 4).13

Initially, treatment of alkenylpyridine **7a** with Ph₂PH using *t*-BuOK in DMSO led to a mixture of P,N-ligand **1** and aminophosphine oxide **17a**. Attempts to purify the

mixture by recrystallization or column chromatography either using silica gel or alumina oxide were unsuccessful. We considered the performance of the hydrophosphination with Ph2P(O)H (**6**), followed by reduction of **17a** to aminophosphine **1**. Thus, the addition of phosphine oxide **6** to alkenylpyridine **7a** in the presence of substoichiometric amounts of *t*-BuOK (20 mol %) in DMSO furnished aminophosphine oxide **17a** in 87% yield as a single diastereomer (Scheme 5). Under these standard conditions, a new class of modular chiral aminophosphine oxides **17a**-**^e** was prepared in good yields (72-87% yield). The products were characterized by NOESY NMR experiments and by X-ray crystal structure analysis.⁸ Having the novel aminophosphine oxides **17a**-**^e** in hand, the reduction of $17a-e$ was achieved with $HSiCl₃$ and Et3N in toluene upon heating to 120 °C, yielding chiral aminophosphines $1-5$ in $61-92%$ yield (Scheme 5).¹⁴

After these successful results for the synthesis of chiral P,N-ligands, we extended our methodology for the synthesis of chiral 1,2-diphosphines. Helmchen et al. previously reported the addition of diphenylphosphine to Michael acceptors.¹⁵ Thus, we applied our methodology for the synthesis of chiral 1,2-diphosphines by the addition of phosphine oxide **6** to the alkenylphosphine oxide **8a** in the presence of *t*-BuOK (20 mol %) in DMSO. Unfortunately, we observed solely starting material **8a** even after heating to 90 °C for 16 h (Scheme 6).

Assuming that the steric hindrance of the substituents on the phosphine oxide was accountable for this failure, we changed the substituents on the phosphine oxide from phenyl to 2-furyl group. First, Pd-catalyzed crosscoupling16 of di-2-furylphosphine oxide **18** with alkenyl triflate **12** led to alkenylphosphine oxide **8b** in 58% yield. Treatment of alkenylphosphine oxide **8b** with phosphine oxide **6** in the presence of *t*-BuOK (20 mol %) provided chiral diphosphine oxide **20** in 70% yield. The reduction of phosphine oxides **19** was performed under the same conditions ($HSiCl₃/Et₃N$ in toluene) furnishing the chiral diphosphine ligand **20** in 68% yield (Scheme 7).

We have tested the novel chiral P,N-ligands **¹**-**⁵** and chiral P,P-ligand **20** in asymmetric catalysis. Pfaltz et al. have reported that iridium phosphinooxazoline complexes are highly effective catalysts for enantioselective hydrogenation reactions of olefins including unfunctionalized alkenes.¹⁷ Following Pfaltz's procedure,¹⁸ Ir complexes **¹**-**⁴** were readily prepared by heating a solution of $[Ir(cod)Cl]_2$ and the respective P,N-ligands $1-4$ in CH₂- $Cl₂$ (1 h). After treatment with sodium tetrakis[3,5-bis-

^{(11) (}a) Negishi, E.-I. *Acc. Chem. Res*. **1982**, *15*, 340. (b) Negishi, E.-I. In *Metal-Catalyzed Cross Coupling Reactions*; Diederich, F., Stang, P. J, Eds.; Wiley-VCH: Weinheim, 1998; Chapter 1. (c) Erdik, E. *Tetrahedron* **1992**, *48*, 9577.

^{(12) (}a) Cai, D.; Hughes, D. L.; Verhoeven, T. R. *Tetrahedron Lett*. **1996**, *37*, 2537. (b) Peterson, M. A.; Mitchell, J. R. *J. Org. Chem*. **1997**, *62*, 8237.

⁽¹³⁾ Chelucci, G.; Culeddu, N.; Saba, A.; Valenti, R. *Tetrahedron: Asymmetry* **1999**, *10*, 3537.

⁽¹⁴⁾ Yasuhiro, U.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. *J. Org. Chem*. **1993**, *58*, 1945.

⁽¹⁵⁾ Knu¨hl, G.; Sennhenn, P.; Helmchen, G. *Chem. Commun*. **1995**, 1845. See also: Krotz, A. Dissertation, Universität Heidelberg, Heidelberg, Germany, 1999.

⁽¹⁶⁾ Gilbertson, S. R.; Fu, Z.; Starkey, G. W. *Tetrahedron Lett*. **1999**, *40*, 8509.

^{(17) (}a) Schnider, P.; Koch, G.; Prétôt, R.; Wang, G.; Bohnen, F. M.; Krüger, C.; Pfaltz, A. *Chem. Eur. J.* **1997**, 3, 887. (b) Blackmond, D. G.; Lightfoot, A.; Pfaltz, A.; Rosner, T.; Schnider, P.; Zimmermann, N. *Chirality* **2000**, *12*, 442. (c) Pfaltz, A.; Blankenstein, J.; Hilgraf, R.; Hörmann, E.; McIntyre, S.; Menges, F.; Schönleber, M.; Smidt, S. P.;
Wüstenberg, B.; Zimmermann, N. *Adv. Synth. Catal*. **2003**, *345*, 33. (d) Powell, M. T.; Hou, D.-R.; Perry, M. C.; Cui, X.; Burgess, K. *J. Am. Chem. Soc.* **2001**, *123*, 8878. (e) Hou, D.-R.; Reibenspies, J.; Colacot, T. J.; Burgess, K. *Chem. Eur. J.* **2001**, *7*, 5391. (f) Drury, W. J., III; Zimmermann, N.; Keenan, M.; Hayashi, M.; Kaiser, S.; Goddard, R.; Pfaltz, A. *Angew. Chem., Int. Ed*. **2004**, *43*, 70.

⁽¹⁸⁾ Lightfoot, A.; Schnider, P.; Pfaltz, A. *Angew. Chem.* **1998***, 110*, 3047; *Angew. Chem., Int. Ed.* **1998**, *37*, 2897.

IOC Article

SCHEME 4

SCHEME 5

SCHEME 6

(trifluoromethyl)phenyl]borate (NaBARF) in a biphasic $CH_2Cl_2-H_2O$ system, the resulting orange BARF salts (Ir-**1**-**4**) were purified by column chromatography on silica gel (50% CH_2Cl_2 in pentane). These complexes were stable toward oxygen and moisture (Scheme 8).

Among the Ir complexes of **¹**-**4**, Ir-**³** exhibited high enantioselectivities in hydrogenation reactions of (*E*)-1,2 diphenylpropene and 2-(4-methoxyphenyl)-1-phenyl-1 propene leading to the hydrogenated products **21** and **22** in 95% ee (Scheme 9). Additionally, trisubstituted functionalized alkenes such as ethyl 3-phenylbutenoate (**23**), 2-methyl-3-phenylallyl alcohol (**24**), and 2-methyl-3-phenylallyl acetate (**25**) were also hydrogenated in the presence of Ir -3 (1 mol %; 50 bar of H₂, rt, 12 h). The hydrogenated products were obtained with moderate to good enantioselectivities (58-80% ee; see Scheme 9).

The hydrogenation of unsaturated enamides such as **26** to amino acid derivatives such as **27** is of special interest. This enantioselective hydrogenation was extensively studied using Rh catalysts.¹⁹ To the best of our knowledge, no enantioselective Ir-catalyzed hydrogenation reactions of these substrates were reported. We describe for the first time that the hydrogenation of **26** in the presence of Ir-**¹** provided phenylalanine derivative **27** in high enantioselectivity (97% ee) with full conversion. Remarkably, this reaction was carried out under 1 bar of H_2 at 50 °C, 16 h (Scheme 10).

The asymmetric hydroboration of styrene with catecholborane using chiral BINAP gave high enantioselectivity as shown by Hayashi.20 We have used the chiral ligand **20** in the Rh-catalyzed asymmetric hydroboration of styrene and have found a complete regioselectivity of hydroboration leading to the branched alcohol **28** after oxidation (30% H_2O_2 , 2 M NaOH) in 72% yield and moderate enantioselectivity (61% ee, Scheme 11).

Conclusion

In summary, novel chiral P,N-ligands **¹**-**⁵** have been prepared in high yield through *t*-BuOK-mediated addition of phosphine oxides **⁶** to alkenylpyridines **7a**-**e**. They are effective ligands in Ir-catalyzed asymmetric hydrogenation reactions of (*E*)-1,2-diphenylpropene leading to the hydrogenated product in 95% ee. Remarkably, we also reported for the first time that novel chiral P,Nligands could be used for asymmetric Ir-catalyzed hydrogenation reactions of dehydroamino acid derivatives such as (Z) - α -(acetamido)cinnamate **26** leading to phenylalanine derivative **27** in high enantioselectivity (97% ee). We have described the preparation of chiral diphosphine ligand **20** through addition of $Ph_2P(O)H$ (6) to alkenylphosphine oxide **8b** in the presence of substoichiometric amounts of *t*-BuOK (20 mol %) in DMSO. Application in asymmetric catalysis such as Rh-catalyzed hydroboration of styrene using chiral ligand **20** gave only moderate enantioselectivity of **28** (61% ee). Further applications in new asymmetric catalysis as well as the synthesis of chiral modular chiral P,P-ligands are currently underway in our laboratories.

Experimental Section

General Procedure for Negishi Cross-Coupling Reactions. A solution of *n*-BuLi (13.4 mL, 1.5 M in hexane, 20 mmol) was added dropwise at -78 °C to a solution of

^{(19) (}a) Ojima, I. *Catalytic Asymmetric Synthesis*, 2nd ed.; VCH: Weinheim, 2000. (b) Noyori, R. *Asymmetric Catalysis in Organic Synthesis*; Wiley: New York, 1994. (c) Tang, W.; Zhang, X. *Chem. Rev*. **2003**, *103*, 3029.

^{(20) (}a) Hayashi, T.; Matsumoto, Y.; Ito, Y. *J. Am. Chem. Soc*. **1989**, *111*, 3426. (b) Hayashi, T.; Matsumoto, Y. *Tetrahedron: Asymmetry* **1991**, *2*, 601.

SCHEME 8

20:68%

2-bromopyridine (20 mmol) in THF (20 mL). The reaction mixture was stirred at -78 °C for 30 min, and then a solution of ZnBr_2 (12.4 mL, 1.7 M in THF, 21 mmol) was added dropwise. After 15 min at -78 °C, the reaction mixture was allowed to warm to room temperature for 30 min, and then a solution of the alkenyl triflate (10 mmol), $Pd(dba)_2$ (115 mg, 0.2 mmol, 2 mol %), and dppf (111 mg, 0.2 mmol, 2 mol %) in THF (15 mL) was added dropwise. The reaction mixture was heated to reflux (70 °C) for 15 h. The reaction mixture was quenched with saturated aqueous NH4Cl (40 mL), and the aqueous phase was extracted with Et_2O (3 \times 60 mL). The organic phase was washed with brine and dried (MgSO4) and concentrated in vacuo. Purification by flash chromatography yielded the desired product.

2-[(1*R***,4***R***)-1,7,7-Trimethylbicyclo[2.2.1]hept-2-en-2-yl] pyridine (7a):** 78% yield as a pale yellow liquid. Purification by flash chromatography using 20% Et₂O in pentane: $[\alpha]^{27}$ _D -176.4 (*^c* 1.825, CHCl3); 1H NMR (300 MHz, CDCl3) *^δ* 8.47 (ddd, $J = 4.8$, 1.8, 0.9 Hz, 1H), 7.48 (dt, $J = 7.5$, 1.8 Hz, 1H), 7.20 (m, 1H), 6.97 (ddd, $J = 7.5$, 4.8, 1.2 Hz, 1H), 6.26 (d, $J =$ 3.3 Hz, 1H), 2.35 (t, $J = 3.6$ Hz, 1H), 1.92-1.82 (m, 1H), 1.68-1.56 (m, 1H), 1.40-1.28 (m, 1H), 1.17 (s, 3H), 1.08-0.96 (m, 1H), 0.81 (s, 3H), 0.75 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 157.8, 149.8, 149.4, 136.1, 135.9, 121.5, 121.3, 57.3, 55.3, 52.2, 32.1, 26.0, 20.1, 14.5, 12.8; IR (KBr, cm-1) 2953, 2872, 1583, 1560, 1464, 1430, 1385, 775.

2-Bromo-6-[(1*R***,5***S***)-6,6-dimethylbicyclo[3.1.1]hept-2 en-2-yl]pyridine (16a):** 34% yield as a pale yellow liquid. Purification by flash chromatography using 2% Et₂O in pentane: ¹H NMR (300 MHz, CDCl₃) δ 7.32 (t, *J* = 7.7 Hz, 1H), 7.20-7.12 (m, 2H), 6.37 (d, $J = 3.3$ Hz, 1H), 2.34 (t, $J = 3.6$ Hz, 1H), 1.94-1.82 (m, 1H), 1.64-1.55 (m, 1H), 1.36-1.28 (m, ¹³C NMR (75 MHz, CDCl₃) δ 158.6, 148.3, 141.6, 138.3, 137.7, 125.2, 119.7, 57.3, 55.2, 52.2, 31.9, 26.0, 20.0, 19.9, 12.7; IR (KBr, cm-1) 1575, 1543, 1432, 1387, 1158, 1117, 985, 787.

2-[(1*R***,4***R***)-1,7,7-Trimethylbicyclo[2.2.1]hept-2-en-2-yl] quinoline (7b):** 60% yield as a white solid. Purification by flash chromatography using 5% Et₂O in pentane: mp $96-98$ $°C; [\alpha]^{23}$ _D -181.3 (*c* 0.45, CHCl₃); ¹H NMR (300 MHz, CDCl₃) *^δ* 7.98-7.86 (m, 2H), 7.62-7.50 (m, 2H), 7.40-7.28 (m, 2H), 6.44 (d, $J = 3.6$ Hz, 1H), 2.39 (t, $J = 3.6$ Hz, 1H), $1.95-1.84$ (m, 1H), 1.70-1.61 (m, 1H), 1.48-1.37 (m, 1H), 1.35 (s, 3H), 1.07-0.98 (m, 1H), 0.83 (s, 3H), 0.77 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 157.5, 150.1, 148.3, 137.8, 135.6, 130.0, 129.4, 127.6, 127.0, 125.9, 120.2, 57.1, 55.7, 52.5, 32.1, 26.2, 20.2, 19.9, 13.1; IR (KBr, cm-1) 1600, 1500, 1424, 1232, 1107, 820, 765; MS (EI, 70 eV) 263 (M+, 70), 248 (100), 220 (62); HRMS calcd for $C_{19}H_{21}N$ (M⁺) 263.1674, found 263.1658.

2-[(1*R***,5***S***)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl] pyridine (7c):** 89% yield as a pale yellow liquid. Purification by flash chromatography using 5% Et₂O in pentane: $[\alpha]^{23}$ _D -27.0 (*^c* 0.725, CHCl3); 1H NMR (300 MHz, CDCl3) *^δ* 8.46 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.48 (dt, *J* = 7.5, 1.8 Hz, 1H), 7.32-7.25 (m, 1H), 6.97 (ddd, $J = 7.5$, 4.8, 0.9 Hz, 1H), 6.30-6.26 (m, 1H), 3.03-2.97 (m, 1H), 2.48-2.32 (m, 4H), 1.30 (s, 3H), 1.21 (d, *J* = 8.7 Hz, 1H), 0.79 (s, 3H); ¹³C NMR (75 MHz, CDCl3) *δ* 158.2, 149.4, 147.8, 136.4, 124.5, 121.6, 119.3, 43.2, 41.1, 38.2, 32.4, 31.9, 26.6, 21.3; IR (KBr, cm-1) 1624, 1585, 1562, 1432, 1465, 1365, 770; MS (EI, 70 eV) 198 (M+, 47), 184 (100), 156 (14); HRMS calcd for $C_{14}H_{17}N(M^+)$ 199.1361, found 199.1388.

2-Bromo-6-[(1*R***,5***S***)-6,6-dimethylbicyclo[3.1.1]hept-2 en-2-yl]pyridine (16b):** 70% yield as a pale yellow liquid. Purification by flash chromatography using 2% Et₂O in pentane: ¹H NMR (300 MHz, CDCl₃) δ 7.35 (t, *J* = 7.8 Hz, 1H), 7.24-7.14 (m, 2H), 6.48-6.42 (m, 1H), 2.93 (dd, $J = 5.7, 1.5$ Hz, 1H), 2.48-2.36 (m, 3H), 2.14-2.08 (m, 1H), 1.31 (s, 3H), 1.18 (d, $J = 9.0$ Hz, 1H), 0.77 (s, 3H); ¹³C NMR (75 MHz, CDCl3) *δ* 159.2, 146.3, 142.1, 138.8, 126.5, 125.7, 117.6, 42.9, 40.9, 38.3, 32.5, 31.9, 26.6, 21.4; IR (KBr, cm-1) 1621, 1574, 1545, 1434, 1160, 1122, 782; MS (EI, 70 eV) 278 ([M ⁺ H]+, 70), 236 (100), 154 (46); HRMS calcd for $C_{14}H_{16}BrN$ (M⁺) 277.0466, found 277.0476.

General Procedure for Suzuki Cross-Coupling Reactions. A solution of bromopyridine (0.50 mmol) and $Pd(PPh₃)₄$ (23 mg, 0.02 mmol, 4 mol %) in toluene (2 mL) was treated with a solution of Na_2CO_3 (106 mg, 1 mmol) in H₂O (1 mL), followed by a solution of $PhB(OH)_2$ (64 mg, 0.53 mmol) in MeOH (1 mL). The mixture was stirred at 85 °C for 16 h. After the mixture cooled to 25 °C, a solution of concentrated aqueous NH₃ (0.25 mL) in saturated Na₂CO₃ (2.5 mL) was added and the mixture was extracted with CH_2Cl_2 (3 \times 20 mL). The combined organic layers were washed with brine and dried (MgSO4). Removal of the solvent in vacuo gave a residue that was purified by flash column chromatography, yielding the desired product.

2-Phenyl-6-[(1*R***,4***R***)-1,7,7-trimethylbicyclo[2.2.1]hept-2-en-2-yl]pyridine (7d):** 99% yield as a pale yellow liquid. Purification by flash chromatography using 2% Et₂O in pentane; $[\alpha]^{21}$ _D -166.5 (*c* 0.585, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.10-7.96 (m, 2H), 7.54 (t, $J = 7.7$ Hz, 1H), 7.48-7.28 (m, 4H), 7.20 (dd, $J = 7.5$, 1.2 Hz, 1H), 6.31 (d, $J = 3.3$ Hz, 1H), 2.37 (t, $J = 3.6$ Hz, 1H), $1.94-1.82$ (m, 1H), $1.68-$ 1.60 (m, 1H), 1.48-1.42 (m, 1H), 1.31 (s, 3H), 1.08-0.98 (m, 1H), 0.83 (s, 3H), 0.78 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 156.3, 154.7, 148.6, 138.8, 135.5, 127.6, 127.5, 125.8, 118.3, 116.1, 55.7, 54.1, 50.9, 30.7, 24.8, 18.7, 18.5, 11.7.

2-[(1*R***,5***S***)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl]-6 phenylpyridine (7e):** 91% yield as a pale yellow liquid. Purification by flash chromatography using 2% Et₂O in pentane; $[\alpha]^{25}$ _D -13.2 (*c* 0.56, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.02-7.96 (m, 2H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.48-7.24 (m, *δ* 8.02–7.96 (m, 2H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.48–7.24 (m, 5H) 6.50–6.46 (m, 1H), 3.17 (dd, *J* = 5.7, 1.5 Hz, 1H), 2.40 5H), 6.50–6.46 (m, 1H), 3.17 (dd, *J* = 5.7, 1.5 Hz, 1H), 2.40
(m, 3H), 2.52–2.49 (m, 1H), 1.34 (s, 3H), 1.24 (d, *J* = 8.7 Hz $(m, 3H)$, 2.52-2.49 $(m, 1H)$, 1.34 $(s, 3H)$, 1.24 $(d, J = 8.7 Hz$,

)C Article

SCHEME 9

SCHEME 10

SCHEME 11

1H), 0.82 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 157.5, 156.4, 147.9, 140.2, 137.1, 129.0, 128.9, 127.3, 124.4, 118.1, 117.3, 43.0, 41.1, 38.3, 32.5, 31.9, 26.8, 21.4; IR (KBr, cm-1) 1587, 1565, 1456, 1365, 760; MS (EI, 70 eV) 275 (M+, 100), 260 (78), 232 (85); HRMS calcd for $C_{20}H_{21}N$ (M⁺) 275.1674, found 275.1679.

General Procedure for the Preparation of Chiral 1,2- Aminophosphine Oxides 17a-**e and Chiral 1,2-Diphosphine Oxide 19.** To a stirred solution of *t*-BuOK (22 mg, 0.2 mmol, 20 mol %) in DMSO (1 mL) were successively added Ph2P(O)H (**6**) (202 mg, 1 mmol) and 2-alkenylpyridine (1 mmol) in DMSO (2 mL) under argon. The reaction mixture was stirred at 70 °C for 15 h. After the mixture cooled to room temperature, water (5 mL) and CH_2Cl_2 were added (20 mL). The organic phase was washed with brine, dried (MgSO₄), and concentrated in vacuo. Purification by flash chromatography yielded the desired product.

2-[(1*S***,2***R***,3***S***,5***R***)-3-(Diphenylphosphoryl)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]pyridine (17a):** 87% yield as a white solid. Purification by flash chromatography using 10% Et₂O in CH₂Cl₂: mp 132-139 °C; [α]²³_D +78.9 (*c* 0.56, CHCl₃); ¹H NMR (300 MHz, CDCl₃) *δ* 8.40-8.30 (m, 1H), 7.96-7.86 (m, 2H), 7.52-7.36 (m, 5H), 7.32-7.24 (m, 1H), 7.10-6.88 (m, 4H), $6.67 - 6.60$ (m, 1H), 3.71 (dd, $J = 8.4$, 6.3 Hz, 1H), 3.50 (ddd, $J = 20.7$, 8.7, 2.1 Hz, 1H), 2.20 (d, $J = 9.2$, 3.8 Hz, 1H), $1.96-1.80$ (m, 2H), $1.72-1.60$ (m, 1H), 1.41 (s, 3H), $1.20-1.08$ (m, 1H), 0.92 (s, 3H), 0.75 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 159.7, 148.5, 135.4, 134.6 (d, *J* = 94.0 Hz), 133.4 (d, *J* = 94.0 Hz), $131.6 - 131.3$ (m), 130.7 (d, $J = 2.7$ Hz), 128.9 (d, $J =$ 11 Hz), 127.7 (d, $J = 11$ Hz), 125.6, 121.4, 53.3 (d, $J = 2.9$ Hz), 52.2 (d, $J = 5.1$ Hz), 51.0, 48.1, 45.2 (d, $J = 70.4$ Hz), 32.3 (d, J = 13.7 Hz), 28.2, 21.2, 20.2, 14.5; ³¹P NMR (81 MHz, CDCl3) *δ* 32.8; IR (KBr, cm-1) 1589, 1478, 1433, 1390, 1206,

1147, 740; MS (EI, 70 eV) 415 (M+, 6), 332 (30), 214 (100); HRMS calcd for $C_{27}H_{30}NOP$ (M⁺) 415.2065, found 415.2061. Anal. Calcd for C₂₇H₃₀NOP: C, 78.05; H, 7.28; N, 3.37. Found: C, 77.82; H, 7.17; N, 3.27.

2-[(1*S***,2***R***,3***S***,4***S***)-3-(Diphenylphosphoryl)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl]-6-phenylpyridine (17d):** 72% yield as a white solid. Purification by flash chromatography using 10% Et₂O in CH₂Cl₂: mp 69–72 °C; [α]²²_D –68.9 (*c* 0.505,
CHCl^{3}} ¹H NMR (300 MHz, CDCl³) δ 8.09–7.96 (m. 2H), 7.84– CHCl3); 1H NMR (300 MHz, CDCl3) *^δ* 8.09-7.96 (m, 2H), 7.84- 7.74 (m, 2H), 7.48-7.24 (m, 10H), 6.96-6.88 (m, 1H), 6.80- 6.72 (m, 2H), 6.61 (m, 1H), 3.95 (m, 1H), 3.53 (ddd, $J = 10.5$, 4.2, 0.9 Hz, 1H), 2.22 (dd, $J = 4.8$, 2.1 Hz, 1H), 2.00-1.88 (m, 2H), 1.74-1.70 (m, 1H), 1.40 (s, 3H), 1.22-1-13 (m, 1H), 0.93 (s, 3H), 0.79 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 159.2, 155.2, 140.0, 136.4, 135.5, 134.8, (d, $J = 96.0$ Hz), 133.2 (d, $J = 96.0$ Hz), 131.6-131.4 (m), 130.7 (d, $J = 2.3$ Hz), 129.1, 128.8 (d, *J* = 11.0 Hz), 127.6 (d, *J* = 11.0 Hz), 126.9, 124.0, 117.8, 53.6 $(d, J = 2.9 \text{ Hz})$, 52.1 $(d, J = 5.2 \text{ Hz})$, 51.1, 48.1, 45.4 $(d, J = 70 \text{ Hz})$ Hz), 32.6 (d, J = 13.7 Hz), 28.4, 21.1, 20.2, 14.6; ³¹P NMR (81) MHz, CDCl₃) δ 32.6; IR (KBr, cm⁻¹) 1570, 1438, 1195, 1115; MS (EI, 70 eV) 477 (M⁺, 7), 276 (100); HRMS calcd for $C_{33}H_{34}$ -NOP (M+) 491.2378, found 491.2380.

(1*S***,2***R***,3***R***,5***R***)-6,6-Dimethyl-2-(2-naphthyl)bicyclo[3.1.1] hept-3-yl(diphenyl)phosphine Oxide (17c):** 93% yield as a white solid. Purification by flash chromatography using 5% Et₂O in CH₂Cl₂: mp 70−78 °C; [α]²⁸_D +83.4 (*c* 0.525, CHCl₃); ¹H NMR (300 MHz, CDCl₃) *δ* 8.00−7.80 (m, 3H), 7.70−7.55 (m, 3H), 7.44-6.55 (m, 6H), 6.78-6.58 (m, 4H), 4.01 (t, $J =$ 7.5 Hz, 1H), 3.58 (dd, $J = 20$, 2.1 Hz, 1H), 2.17 (dd, $J = 9.3$, 3.8 Hz, 1H), 1.93-1.60 (m, 3H), 1.35 (s, 3H), 1.18-0.95 (m, 1H), 0.85 (s, 3H), 0.75 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 160.1, 147.5, 135.1, 134.9 (d, $J = 96.0$ Hz), 133.1 (d, $J = 96.0$ Hz), 131.6-131.4 (m), 130.4 (d, J = 2.7 Hz), 129.6-128.8 (m), 127.6-127.4 (m), 127.2, 125.9, 123.9, 54.2 (d, J = 2.4 Hz), 52.7 (d, $J = 4.6$ Hz), 51.3, 48.0, 45.0 (d, $J = 70.0$ Hz), 32.4 (d, $J =$ 14.0 Hz), 28.3, 21.2, 20.2, 14.9; 31P NMR (81 MHz, CDCl3) *δ* 32.9; IR (KBr, cm-1) 1600, 1503, 1437, 1194, 1114, 837; MS $(EI, 70 \text{ eV})$ 465 $(M^+, 3)$, 382 (7) , 264 (100) ; HRMS calcd for $C_{31}H_{32}NOP$ (M⁺) 465.2222, found 465.2245. Anal. Calcd for C31H32NOP: C, 79.97; H, 6.93; N, 3.01. Found: C, 79.64; H, 6.94; N, 3.05.

2-[(1*S***,2***R***,3***S***,5***R***)-3-(Diphenylphosphoryl)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]pyridine (17b):** 85% yield as a white solid. Purification by flash chromatography using 5% Et₂O in CH₂Cl₂: mp 57-63 °C; [α]²⁶_D -24.0 (*c* 0.56, CHCl₃); ¹H NMR (300 MHz, CDCl₃) *δ* 8.29-8.25 (m 1H), 8.00-7.90 (m, 2H), 7.60-7.52 (m, 2H), 7.44-7.40 (m, 3H), 7.22-7.16 (m, 1H), $7.02 - 6.88$ (m, 3H), $6.84 - 6.76$ (m, 1H), 6.70 (d, $J = 7.8$ Hz, 1H), 4.80–4.67 (m, 1H), 3.72 (ddd, $J = 22.0, 6.6, 2.7$ Hz, 1H), $2.40 - 2.12$ (m, 4H), $1.93 - 1.85$ (m, 1H), 1.72 (d, $J = 9.9$ Hz, 1H), 1.01 (s, 3H), 0.72 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 162.6 (d, *J* = 2.7 Hz), 147.2, 135.9, 133.8 (d, *J* = 82.0 Hz), 132.5 (d, *J* = 82.0 Hz), 131.8-131.6 (m), 131.0 (d, *J* = 2.7 Hz), 128.9 (d, *J* = 11.2 Hz), 127.6 (d, *J* = 11.2 Hz), 123.9, 121.0, 128.9 (d, $J = 11.2$ Hz), 127.6 (d, $J = 11.2$ Hz), 123.9, 121.0, 48.3 (d, $J = 5.6$ Hz), 46.6, 40.7 (d, $J = 3.8$ Hz), 39.1, 30.9, 27.9 48.3 (d, *J* = 5.6 Hz), 46.6, 40.7 (d, *J* = 3.8 Hz), 39.1, 30.9, 27.9,
26.5 (d, *J* = 2.1 Hz), 25.2 (d, *J* = 71.0 Hz), 22.7^{, 31}P NMR (81) 26.5 (d, $J = 2.1$ Hz), 25.2 (d, $J = 71.0$ Hz), 22.7; ³¹P NMR (81) MHz, CDCl3) *δ* 38.4; IR (KBr, cm-1) 1589, 1473, 1437, 1191, 1117; MS (EI, 70 eV) 401 (M+, 13), 283 (18), 200 (100); HRMS calcd for $C_{26}H_{28}NOP$ (M⁺) 401.1906, found 401.1906.

2-[(1*S***,2***R***,3***S***,5***R***)-3-(Diphenylphosphoryl)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]-6-phenylpyridine (17e):** 78% yield as a white solid. Purification by flash chromatography using 5% Et₂O in CH₂Cl₂: mp 67-73 °C; [α]²⁹_D +59.2 (*c* 0.76, CHCl3); 1H NMR (300 MHz, CDCl3) *^δ* 8.04-7.86 (m, 4H), 7.52- 7.20 (m, 10 H), 6.94-6.56 (m, 4H), 5.00-4.88 (m, 1H), 3.78 $(\text{ddd}, J = 22.0, 6.6, 2.7 \text{ Hz}, 1H), 2.44-2.12 \text{ (m, 4H)}, 1.94-1.88$ $(m, 1H)$, 1.68 (d, $J = 9.6$ Hz, 1H), 1.03 (s, 3H), 0.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) *δ* 162.6 (d, *J* = 2.3 Hz), 154.4, 140.2, 136.9, 133.8 (d, $J = 95.0$ Hz), 132.5 (d, $J = 95.0$ Hz), 131.8-131.5 (m), 130.9 (d, $J = 2.7$ Hz), 129.1 (d, $J = 3.2$ Hz), 128.9, 127.5 (d, $J = 11.3$ Hz), 126.9, 122.4, 117.4, 48.3 (d, $J = 5.8$ Hz), 46.9, 40.9 (d, $J = 4.1$ Hz), 39.3, 31.4, 28.0, 26.6 (d, $J =$ 2.0 Hz), 25.4 (d, $J = 71.0$ Hz), 24.9, 23.0; ³¹P NMR (81 MHz, CDCl3) *δ* 37.9; IR (KBr, cm-1) 1590, 1571, 1445, 1191, 1117; MS (EI, 70 eV) 477 (M⁺, 7), 276 (100); HRMS calcd for $C_{32}H_{32}$ -NOP (M+) 477.2222, found 477.2213.

[(1*R***,2***S***,3***R***,4***S***)-3-(Diphenylphosphoryl)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl][di(2-furyl)]phosphine Oxide (19):** 70% yield as a white solid. Purification by flash chromatography using 50% Et₂O in CH₂Cl₂: mp 271-273 °C; ¹H NMR (300 MHz, CDCl3) *^δ* 7.66-7.52 (m, 5H), 7.38-7.20 (m, 7H), 6.89 (ddd, *J* = 3.3, 1.8, 0.6 Hz, 1H), 6.45 (ddd, *J* = 3.3, 1.8, 0.6 Hz, 1H), 6.37-6.34 (m, 1H), 5.92-5.89 (m, 1H), 3.50- 3.32 (m, 2H), 2.48-2.38 (m, 1H), 1.80-1.52 (m, 3H), 1.40- 1.14 (m, 1H), 1.04 (s, 3H), 0.60 (s, 3H), 0.38 (s, 3H); 13C NMR (75 MHz, CDCl₃) *δ* 147.7 (d, $J = 99.3$ Hz), 148.0-147.9 (m), 145.9 (d, $J = 99.3$ Hz), 135.3 (d, $J = 24.7$ Hz), 134.0 (d, $J =$ 24.7 Hz), 131.5-131.1 (m), 128.7-128.4 (m), 122.6-122.0 (m), 111.5 (d, $J = 8.5$ Hz), 111.3 (d, $J = 8.5$ Hz), 52.0, 51.2 (d, $J =$ 12.0 Hz), 49.9 (d, $J = 5.0$ Hz), 47.6 (d, $J = 44.0$ Hz), 46.5 (d, *J* = 4.5 Hz), 41.5 (d, *J* = 65.1 Hz), 31.4 (d, *J* = 14.1 Hz), 31.2 (d, $J = 6.2$ Hz), 19.8, 19.7; ³¹P NMR (81 MHz, CDCl₃) δ 26.3 $(d, J = 7.7 \text{ Hz})$, 9.8 $(d, J = 7.7 \text{ Hz})$; IR (KBr, cm⁻¹) 1460, 1438, 1200, 1133, 1012, 913, 771, 751, 714; EI (70 eV) 518 (M+, 15), 337 (61.2), 317 (100), 201 (29.9); HRMS calcd for $C_{30}H_{32}O_4P_2$ (M^{+}) 518.1776, found 518.1760. Anal. Calcd for $C_{30}H_{32}O_4P_2$: C, 69.49; H, 6.22. Found: C, 69.06; H, 6.45.

General Procedure for the Reduction of Phosphine Oxides 17a-**e and 19 to Aminophosphines 1**-**5 and Diphosphine 20.** A tube was charged with the phosphine oxide (0.5 mmol), toluene (15 mL), trichlorosilane (0.5 mL, 10 equiv, 5 mmol), and triethylamine (1.4 mL, 20 equiv, 10 mmol) under argon, sealed, and heated for 16 h at 120 °C. After cooling to 25 °C, the reaction mixture was transferred to a 100 mL flask filled with argon. Toluene and excess trichlorosilane were evaporated in vacuo. The residue was dissolved in toluene (15 mL) and carefully quenched with degassed 10% aqueous $NaHCO₃$ (3 mL). The separated organic phase was filtered and transferred by cannulation in a second flask flushed with argon. Toluene was evaporated in vacuo, and the residue was washed with Et₂O (30 mL). After filtration, remaining solvents were evaporated in vacuo, yielding the desired product.

2-[(1*S***,2***S***,3***R***,4***S***)-3-(Diphenylphosphino)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl]pyridine (1):** 87% yield as a viscous liquid; 1H NMR (300 MHz, CDCl3) *^δ* 8.38-8.34 (m, 1H), 7.48-7.40 (m, 2H), 7.27-6.97 (m, 7H), 6.80-6.64 (m, 3H), 6.46-6.40 (m, 1H), 3.33-3.24 (m, 1H), 3.06-2.95 (m, 1H), 1.95-1.60 (m, 4H), 1.44 (s, 3H), 1.20-1.12 (m, 1H), 0.94 (s, 3H), 0.72 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 159.6, 147.0, 139.0 (d, $J = 15.0$ Hz), 136.3 (d, $J = 15.0$ Hz), 133.6, 133.6-133.1 (m), 131.4 (d, $J = 17.3$ Hz), 127.3-126.7 (m), 126.1 (d, $J = 7.6$ Hz), 123.6, 119.3, 55.6 (d, $J = 9.9$ Hz), 50.4 (d, $J =$ 3.85 Hz), 50.0, 48.1 (d, $J = 12.5$ Hz), 42.6 (d, $J = 13.7$ Hz), 29.9 (d, *J* = 7.3 Hz), 27.3, 20.0, 19.8 (d, *J* = 20.0 Hz), 13.4; ³¹P NMR (81 MHz, CDCl₃) δ −2.1; IR (KBr, cm⁻¹) 1589, 1478, 1433, 1112, 740; MS (EI, 70 eV) 399 (M+, 27), 316 (39), 214 (100), 183 (59); HRMS calcd for C₂₇H₃₀NP (M⁺) 399.2116, found 399.2116.

2-[(1*S***,2***R***,3***S***,4***S***)-3-(Diphenylphosphino)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl]-6-phenylpyridine (2):** 82% yield as a viscous liquid; 1H NMR (300 MHz, CDCl3) *^δ* 8.00-7.92 (m, 2H), 7.48-6.96 (m, 12H), 6.80-6.60 (m, 3H), 6.32 (m, 1H), 3.62 (t, $J = 8.1$ Hz, 1H), $3.02 - 2.92$ (m, 1H), $1.96 - 1.68$ (m, 4H), 1.38 (s, 3H), $1.12-1.00$ (m, 1H), 0.88 (s, 3H), 0.68 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) *δ* 159.1, 153.7, 139.2 (d, *J* = 15.0 Hz), 138.9, 136.2 (d, $J = 15.0$ Hz), 134.5, 133.3 (d, $J = 18.8$ Hz), 131.4 (d, J = 18.8 Hz), 127.6-127.2 (m), 126.8, 126.1 (d, J = 8.0 Hz) 125.6, 122.3, 115.7, 55.7 (d, $J = 10.0$ Hz), 50.4 (d, $J =$ 4.1 Hz), 50.3, 48.1 (d, $J = 12.8$ Hz), 42.4 (d, $J = 13.4$ Hz), 30.1 (d, $J = 7.0$ Hz), 27.4, 19.9, 19.7, 13.5; ³¹P NMR (81 MHz, CDCl₃) δ -2.1; MS (EI, 70 eV) 475 (M⁺, 26), 392 (18), 290 (100), 182 (32); HRMS calcd for $C_{33}H_{34}NP$ (M⁺) 475.2429, found 475.2447.

2-[(1*S***,2***R***,3***S***,4***S***)-3-(Diphenylphosphino)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl]quinoline (3):** 61% yield as a viscous liquid; 1H NMR (300 MHz, CDCl3) *δ* 7.91 (m, 1H), 7.60-7.20 (m, 9H), 7.06-6.98 (m, 2H), 6.60-6.40 (m, 4H), 3.65 (t, $J = 8.1$ Hz, 1H), 3.16 (m, 1H), 1.92-1.72 (m, 4H), 1.40 (s, 3H), 1.08-1.00 (m, 1H), 0.88 (s, 3H), 0.72 (s, 3H); 13C NMR $(75 \text{ MHz}, \text{CDCl}_3)$ δ 160.1, 146.3, 139.2 (d, $J = 15.0 \text{ Hz}$), 136.1 $(d, J = 15.0 \text{ Hz})$, 133.5-133.1 (m), 131.4 (d, $J = 17.2 \text{ Hz}$), 128.3, 127.4-126.8 (m), 126.0-125.8 (m), 125.4, 124.2, 122.2, 56.4 (d, $J = 10.1$ Hz), 50.9 (d, $J = 3.8$ Hz), 50.5, 48.1 (d, $J = 12.8$ Hz), 42.3 (d, $J = 13.7$ Hz), 30.0 (d, $J = 7.4$ Hz), 27.4, 20.0, 19.7, 13.7; ³¹P NMR (81 MHz, CDCl₃) δ -1.5; IR (KBr, cm⁻¹) 1618, 1600, 1435, 834; MS (EI, 70 eV) 449 (M+, 28), 366 (17), 264 (100), 156 (33); HRMS calcd for C31H32NP (M+) 449.2272, found 449.2301.

2-[(1*S***,2***R***,3***S***,5***R***)-3-(Diphenylphosphino)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]pyridine (4):** 80% yield as a viscous liquid; 1H NMR (300 MHz, CDCl3) *^δ* 8.24-8.20 (m, 1H), 7.66- 7.58 (m, 2H), 7.32-7.12 (m, 6H), 6.88-6.68 (m, 5H), 4.34- 4.22 (m, 1H), 3.35 (ddd, $J = 18.3, 6.0, 2.4, 1H$), 2.44-2.20 (m, 3H), 1.92-1.74 (m, 2H), 1.41 (d, $J = 8.7$ Hz, 1H), 1.02 (s, 3H), 0.79 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.4 (d, $J = 2.6$ Hz), 146.2, 136.8 (d, $J = 15.5$ Hz), 136.2 (d, $J = 15.5$ Hz), 134.1-132.6 (m), 132.7 (d, $J = 18.7$ Hz), 127.6-127.1 (m), 126.2 (d, $J = 7.0$ Hz), 122.0, 119.1, 50.7 (d, $J = 2.6$ Hz), 47.8 $(d, J = 4.9 \text{ Hz})$, 40.6 $(d, J = 2.3 \text{ Hz})$, 38.1 $(d, J = 1.6 \text{ Hz})$, 30.4 $(d, J = 17.8 \text{ Hz})$, 30.0, 26.5, 21.7, 21.4 $(d, J = 8.1 \text{ Hz})$; ³¹P NMR (81 MHz, CDCl3) *δ* 10.5; IR (KBr, cm-1) 1588, 1565, 1472, 1431, 1386; MS (EI, 70 eV) 385 (M⁺, 6), 308 (48), 200 (100); HRMS calcd for $C_{26}H_{28}NP(M^+)$ 385.1959, found 385.1992.

2-[(1*S***,2***R***,3***S***,5***R***)-3-(Diphenylphosphino)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]-6-phenylpyridine (5):** yield 92% as a viscous liquid; 1H NMR (300 MHz, CDCl3) *^δ* 8.00-7.94 (m, 2H), 7.68-7.60 (m, 2H), 7.42-7.20 (m, 10H), 6.82-6.66 (m, 3H), 6.61 (m, 1H), 4.64-4.54 (m, 1H), 3.44-3.32 (m, 1H), 2.44- 2.28 (m, 3H), 1.96-1.80 (m, 2H), 1.44-1.36 (m, 1H), 1.04 (s, 3H), 0.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.9 (d, *J* = 2.3 Hz), 153.0, 138.9, 136.9 (d, $J = 15.5$ Hz), 136.1 (d, $J =$ 15.5 Hz), 135.0, 133.2 (d, $J = 18.8$ Hz), 132.7 (d, $J = 18.8$ Hz), $127.6-127.2$ (m), 126.1 (d, $J = 7.4$ Hz), 125.6 , 120.5 , 115.5 , 50.7 (d, $J = 19.0$ Hz), 47.7 (d, $J = 5.2$ Hz), 40.7 (d, $J = 2.5$

Hz), 38.4, 30.6 (d, $J = 18.5$ Hz), 30.3, 26.6, 21.9, 21.4 (d, $J =$ 8.3 Hz); 31P NMR (81 MHz, CDCl3) 10.1; MS (EI, 70 eV) 461 (M⁺, 2), 384 (5), 276 (100); HRMS calcd for $C_{32}H_{32}NP(M^+)$ 461.2272, found 461.2241.

[(1*R***,2***S***,3***R***,4***S***)-3-(Diphenylphosphino)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl][di(2-furyl)]phosphine (20):** 68% yield as a foam; 1H NMR (300 MHz, CDCl3) *^δ* 7.60-7.48 (m, $1H$), $7.32-7.04$ (m, $11H$), $6.60-6.54$ (m, $1H$), $6.28-6.20$ (m, 2H), 5.80-5.72 (m, 1H), 3.40-3.28 (m, 1H), 2.48-2.36 (m, 1H), 2.24-2.12 (m, 1H), 1.84-1.70 (m, 1H), 1.40-1.20 (m, 2H), 0.89 $(s, 3H), 0.84-0.72$ (m, 1H), 0.58 (s, 3H), 0.31 (s, 3H); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3) \delta 150.8 \text{ (d, } J = 18.5 \text{ Hz}), 148.2 \text{ (d, } J = 12.3 \text{ m}$ Hz), 145.3, 138.5-138.1 (m), 134.3 (d, $J = 21.0$ Hz), 131.6 (d, $J = 21.0$ Hz), $127.5 - 126.6$ (m), 120.8 (d, $J = 24.5$ Hz), 119.6 (d, $J = 25.7$ Hz), $109.7 - 109.5$ (m), $50.2 - 50.0$ (m), $49.3 - 48.1$ (m), $43.9 - 43.3$ (m), 30.6 (d, $J = 2.6$ Hz), 29.3 (d, $J = 23.9$ Hz), 18.7, 12.8; ³¹P NMR (81 MHz, CDCl₃) δ 8.00 (d, *J* = 2.3 Hz) and -57.5 ; EI (70 eV) 486 (M⁺, 100), 350 (39), 252 (49), 165 (41); HRMS calcd for $C_{30}H_{32}O_2P_2$ (M⁺) 486.1878, found 486.1870.

General Procedure for Ir-Catalyzed Enantioselective Hydrogenation Reactions of α -Acetamidocinnamate Es**ter 27.** Ir complex catalyst **1** (4.7 mg, 3 *µ*mol, 1 mol %), methyl (Z)- α -(acetamido)cinnamate **26** (66 mg, 0.3 mmol), CH₂Cl₂ (3 mL), and MeOH (0.3 mL) were placed in an autoclave. The autoclave was sealed and pressurized to 1 bar of $H₂$, and the mixture was stirred at 50 °C for 2 h. CH_2Cl_2 and MeOH were removed, and the crude product was passed through a short silica gel column with $Et₂O$ as the eluent. After evaporation of the solvent, (*S*)-**27** was obtained in quantitative yield (97% ee): GC (140 °C, column) $t_r/min = 10.5$ (*R*), 11.5 (*S*); ¹H NMR (300 MHz, CDCl3) *^δ* 7.24-7.14 (m, 3H), 7.02-7.00 (m, 2H), 6.04 (d, $J = 7.2$ Hz, 1H), $4.84 - 4.76$ (m, 1H), 3.64 (s, 3H), $3.12 -$ 2.96 (m, 2H), 1.89 (s, 3H); 13C NMR (75 MHz, CDCl3) *δ* 171.5, 169.0, 135.3, 128.6, 127.9, 126.4, 52.5, 51.6, 37.1, 22.4.

Acknowledgment. We thank Dr. Kurt Polborn for the X-ray determination of compound **17a**, **17e**, and **19** and the Fonds der Chemischen Industrie for financial support. We thank the BASF AG (Ludwigshafen), Bayer Chemicals (Leverkusen), and Chemetall GmbH (Frankfurt) for the generous gift of chemicals.

Supporting Information Available: Experimental procedures for all compounds not described in the text, 1H and 13C NMR spectra of compounds **¹**-**5**, **17a**-**e**, **¹⁹**, and **²⁰**, and X-ray data for **17a**, **17e**, and **19**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO030383U